INTEGRATION DE LA BIODIVERSITE D'EAU DOUCE DANS LE PROCESSUS DE DEVELOPPEMENT EN AFRIQUE :

Mobilisation de l'information et sites de démonstration

Projet de démonstration Bassin du fleuve Gambie

Module de formation des formateurs sur

Le suivi des

Mollusques d’eau douce

Dr. Ndiaga THIAM & Anis DIALLO

Septembre 2010
INTEGRATION DE LA BIODIVERSITE D’EAU DOUCE DANS LE PROCESSUS DE DEVELOPPEMENT EN AFRIQUE :

MOBILISATION DE L’INFORMATION ET SITES DE DEMONSTRATION

Projet de démonstration Bassin du fleuve Gambie

Module de formation des formateurs sur

Le suivi des Mollusques d’eau douce

Wetlands International Afrique
Rue 111, Zone B, Villa No 39B
BP 25581 DAKAR-FANN
TEL. : (+221) 33 869 16 81
FAX : (221) 33 825 12 92
EMAIL : wetlands@orange.sn

Septembre 2010
INTRODUCTION

Les mollusques sont présents dans la plupart des milieux d'eau douce africains. Ils se distinguent des autres organismes aquatiques par la présence d'une coquille calcaire constituée d'une seule pièce chez les Gastéropodes et de deux pièces articulées chez les Lamellibranches (appelés également Pélécypodes ou Bivalves). Les mollusques en général et plus particulièrement les Pulmonés qui jouent un rôle important dans la transmission de parasitoses humaines et animales, ont souvent été mieux étudiés que les autres invertébrés de la zone soudanienne. Il n’en reste pas
moins que de nombreux problèmes d’ordre systématique, biologique et écologique sont encore à résoudre.

L’organisation pour la Mise en Valeur du Fleuve Gambie (OMVG) qui regroupe la Gambie, la République de Guinée, la Guinée Bissau et le Sénégal, projette la construction d’un barrage hydroélectrique dans le site de Sambangalou. La construction de ce barrage impliquera une perturbation sérieuse de la biodiversité comme l’atteste d’ailleurs les études d’impacts réalisées par l’OMVG. Pour atténuer les impacts négatifs de ce projet et essayer en même temps d’améliorer ceux qui sont positifs, Wetlands International Afrique, en partenariat avec l’UICN-Species Survival Commission et l’Organisation pour l’OMVG, à travers la phase 2 intitulée « Projet de démonstration du fleuve Gambie (Afrique occidentale) » du programme « Intégration de la biodiversité des eaux douces dans le processus de développement en Afrique : mobilisation de l’information et de site de démonstration » sont en accord pour la mise en œuvre d’un plan de suivi de la biodiversité des écosystèmes d’eau douce dans le bassin du fleuve Gambie.

A cet effet, le Wetlands International en collaboration avec ses partenaires se sont intéressés à l’élaboration de ce module didactique sur la faune malacologique dans la perspective d’un suivi dans le bassin du fleuve Gambie. Ainsi, ce module sur les mollusques d’eau douce est destiné aux formateurs sur le suivi de la biodiversité surtout après la mise en fonction du barrage de Sambangalou dans le cadre de la création d’un observatoire.

Objectifs du module

Le module vise à :

- **Fournir des informations générales relatives aux mollusques (sur la systématique, éco biologie, etc.) ;**
- **Établir un protocole de suivi de la biodiversité des mollusques ;**
- **Renforcer les capacités des formateurs sur le suivi des**

Contenu du module

Le module comprend six parties :
Les 20 heures prévues pour cette formation sont ainsi réparties :
- Introduction (1 heure)
- Présentation de la zone d'étude (2 h)
- Généralités sur les crabes (5 h)
- Eco biologie (4 h)
- Importance des crabes (2 h)
- Menaces pesant sur les espèces d’eau douce (1 h)
- Protocole de suivi des crabes dans le bassin du fleuve Gambie (4 h)
- Recommandations (1 h)
Résultats attendus

Pour le suivi de la biodiversité il sera effectué :
- Le listing et la cartographie des espèces sont établis ;
- La structure communautaire des sites particuliers est bien définie ;
- La répartition spatio-temporelle des mollusques est connue ;
- L’étude comparée de la composition spécifique entre l’amont et l’aval du barrage est faite ;
- Les fréquences de taille des espèces ;
- L’étude pondérale des espèces.

A l’issue de la session de formation, les futurs formateurs connaîtront :
- Les impacts biologiques et abiotiques engendrés par la mise en place du barrage ;
- L’approche méthodologique de suivi de la diversité biologique des crabes est maîtrisée ;
- Les capacités à former d’autres groupes-cibles pour une diffusion plus élargie de la nécessité de la conservation de la biodiversité et la valorisation des ressources prélevées.
I.- LA ZONE D’ETUDE

1.- PRESENTATION DU BASSIN DU FLEUVE GAMBIE

Le fleuve Gambie prend sa source dans les hautes montagnes pluvieuses du Fouta Djallon dans le nord de la région centrale de la Guinée. La quantité totale de l'eau quittant la Guinée pour le Sénégal est estimée à 3 km³/an. Le fleuve coule alors vers le nord pour entrer en Gambie à l'extrême est du pays. La superficie totale du bassin du fleuve Gambie (figure 1) est de 77 850 km². Il y a une grande fluctuation du débit du fleuve entre la saison humide (2000 m³/s) et sèche (10 m³/s). Pour cette raison et du fait de la topographie plate de la Gambie, les eaux salées sont présentes à environ 70 kilomètres en amont en saison des pluies et à 250 kilomètres en amont en saison sèche. Ceci a un effet sur la distribution des espèces et des habitats à l'embouchure. Toutes les variations du débit du fleuve ont un effet sur la composition et la structure des zones proches de l'embouchure.

Trois types principaux de marécage peuvent être trouvés dans le bassin à savoir une zone de mangrove près de l'embouchure, de petites zones inondables au milieu et des forêts riveraines épaisses dans les montagnes de la Guinée. Ces marécages fournissent des habitats à environ 1500 espèces de plantes, à 80 espèces des mammifères, à 330 espèces d'oiseaux, à 26 espèces des reptiles, à environ 150 espèces de poissons d'eau douce et à 481 autres espèces trouvées dans les lagunes côtières. Plusieurs espèces en voie de disparition telles que le chimpanzé, les crocodiles et le pluvier égyptien peuvent encore être trouvées dans ces régions.

Il y a environ 3 millions de personnes vivant dans le bassin de la Gambie qui sont principalement impliqués dans l'agriculture (70 à 90% de la population). D'autres activités incluent la pêche, l'élevage, la sylviculture et le commerce.

L'Organisation pour la Mise en Valeur du fleuve Gambie (OMVG) a été fondée en 1978 pour favoriser le développement du bassin en termes de disposition d'irrigation et d'énergie hydroélectrique. Pour répondre au besoin toujours croissant de...
production d'énergie propre, une étude de faisabilité a été conduite pour la construction d'un barrage dans le fleuve supérieur de la Gambie. La construction d'un barrage hydro-électrique a été récemment approuvée à un emplacement près de Sambangalou. Le barrage aura un impact sur les aspects hydrologiques, abiotiques et écologiques du fleuve. Les impacts principaux sont :
• la réduction du débit maximal d'inondation de 50 à 60%,
• la réduction de la profondeur d'eau à une moyenne globale environ de 10 cm,
• l'intrusion des eaux salines à près de 150 kilomètres avec comme conséquences :
 - La perte de biodiversité animale et de mangrove le long de la banque de fleuve,
 - Les modifications possibles de la configuration morpho-sédimentaires et de la microbiologie,
 - La diminution de la hauteur d'eau en irrigation et,
 - La baisse de la production de poissons.
Il y aura un impact conséquent sur la biodiversité d'eau douce, non seulement sur des espèces commerciales de poissons mais également sur les animaux menacés tels que le lamantin d'Afrique occidentale. Comme conseillé dans l'évaluation des incidences sur l'environnement, la compensation doit être donnée aux communautés locales pour la perte de revenu due aux changements de l'environnement. Les modifications doivent être surveillées en continu afin de détecter tout changement évident sur la biodiversité qui exige une réponse de gestion.
2.- CARACTERISTIQUES ECO BIOLOGIQUE DU BASSIN DU FLEUVE GAMBIE

Cinq types principaux de fonds ont été identifiés dans le bassin du fleuve Gambie : des fonds rocheux ou pierreux, vaseux, argileux, sableux, et latéritiques. Les fonds rocheux et pierreux sont trouvés dans les biotopes avec les eaux courantes, particulièrement le long de la ligne de drainage du fleuve de la Gambie et de ses affluents. Les fonds argileux et vaseux se sont principalement développés dans les zones sujettes aux inondations. Les sols latéritiques sont trouvés dans les étangs. Il y a également des fonds d'argilo-vaseux, argilo-latéritiques et sablo-argileux. Suivant les biotopes, on peut approximativement distinguer deux populations de mollusques dans les eaux stagnantes (étangs, bassins) et dans les eaux courantes (torrents, jets). Cependant, quelques espèces peuvent vivre dans l'un comme dans...
l'autre biotope. Les eaux stagnantes sont l'environnement préféré pour les mollusques pulmonaires qui sont généralement abondants dans la végétation. La dynamique des populations de mollusque est prétendument contrôlée par des précipitations et les rythmes de séchage vers le haut des endroits d'arrosage. Les espèces appartenant aux genres *Bulinus*, *Aspatharia* et *Biomphalaria* peuvent survivre dans les conditions de séchage.

3.- DIVERSITÉ BIOLOGIQUE DES MOLLUSQUES DU BASSIN DU FLEUVE GAMBIE

Environ 38 espèces de mollusques (*Annexe 1*) ont été inventoriées dans le bassin du fleuve Gambie. Ces espèces sont réparties dans 25 genres et 15 familles. Les familles les plus diversifiés sont les Planorbidae avec dix espèces, suivies des Mutelidae qui comportent neuf espèces. Le genre le plus représenté est le *Bulinus* (six espèces) de la famille de Bulinidae. Il faut noter que la liste comporte également des espèces qui peuvent être trouvées aussi dans les environnements saumâtres. Ce sont des espèces euryhalines, mais qui peuvent vivre dans les eaux douces près des côtes. Elles ont une zone de distribution limitée à la côte continentale et pourraient se nommer les dulcicoles périphériques à la différence des espèces qui sont essentiellement dulcicoles appelés les dulcicoles primaires. Vu les difficultés pour placer une ligne de délimitation entre les eaux douces et saumâtres dans les écosystèmes naturels, ces espèces ont été cependant prises en compte dans le listing des taxons rencontrés. En outre, beaucoup d'espèces présentes dans les eaux douces des fleuves Sénégal et Guinée sont absentes sur la liste ; mais seraient susceptibles d’être trouvées dans le bassin du fleuve Gambie.
Il faut noter que certains auteurs rangent les espèces du genre *Bulinus* dans la famille des Planorbidae (comme dans le cas de la figure 1 ci-dessus). D’autres, par contre, distinguent la famille des Bulinidae.

II.- GENERALITÉS

1.- CLASSIFICATION DES MOLLUSQUES

1.1.- PLACE DES MOLLUSQUES DANS LE REGNE ANIMAL
L'embranchement des Mollusques est très vaste. Ils dérivent des Annélides et perdent rapidement leur segmentation. L'intérêt principal au niveau évolutif, est la spécialisation des organes et l'existence de relations de plus en plus poussées entre ces différents organes (Tableau 1).
<table>
<thead>
<tr>
<th>Tableau 1 : Position des Mollusques dans le Règne animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicellulaires</td>
</tr>
<tr>
<td>Unicellulaires</td>
</tr>
<tr>
<td>Éponges (organisme multicellulaire)</td>
</tr>
<tr>
<td>Vers (mobilité et tube digestif bilatérien)</td>
</tr>
<tr>
<td>Poissons primitifs (poissons cartilagineux)</td>
</tr>
<tr>
<td>Poissons type Sarcopterygii (à nageoires charnues)</td>
</tr>
<tr>
<td>Tétrapodes primitifs (type Amphibiens)</td>
</tr>
<tr>
<td>Mammifères primitifs type monotrème</td>
</tr>
<tr>
<td>Serpents</td>
</tr>
<tr>
<td>Tortues</td>
</tr>
<tr>
<td>Oiseaux</td>
</tr>
<tr>
<td>Chiroptères (Chauves-souris)</td>
</tr>
<tr>
<td>Primates</td>
</tr>
<tr>
<td>Carnivores</td>
</tr>
<tr>
<td>Libellules</td>
</tr>
<tr>
<td>Orthoptère (sauterelle, grillon)</td>
</tr>
<tr>
<td>Hémiptères (punaises, cigales,...)</td>
</tr>
<tr>
<td>Lépidoptère (papillon)</td>
</tr>
</tbody>
</table>

Mollusques |
- Échinodermes : Oursin, Crinoïdes, Concombres de mer, étoile de mer et ophiure.
- Bivalves (coquillages)
- Gastéropodes (escargots, limaces, etc.)
- Céphalopodes (seiches, pollock, calmar)
1.2.- PHYLUM DES MOLLUSQUES

Le phylum des Mollusques (tableau 1) a été créé par Georges Cuvier (1769-1832) en 1795. Les mollusques (du latin mollis, « mou ») sont un embranchement du règne animal. L'embranchement contient plus de 130 000 espèces d'eau douce.

Il y a actuellement 8 classes de Mollusques :

- Les Solénogastres (350 espèces connues vivant dans toutes les mers)
- Les Caudofovéates (100 espèces connues vivant dans toutes les mers du globe)
- Les Polyplacophores (900 espèces connues vivant entre 0 et - 3 000 m)
- Les Monoplacophores (15 espèces connues vivant dans les fosses océaniques)
- Les Gastéropodes (103 000 espèces connues ayant une répartition mondiale)
- Les Céphalopodes (786 espèces connues, toutes marines vivant dans toutes les mers sauf la Mer Noire)
- Les Bivalves (12 000 espèces vivant en eau douce et dans toutes les mers du monde)
- Les Scaphopodes (400 espèces toutes marines)

Les Solénogastres et les Caudofovéates étaient anciennement regroupés dans une même classe : les Aplacophores.

Au contraire, les Eumollusques regroupent tous les mollusques à l'exception des Solénogastres et des Caudofovéates.

Les Conchifères sont un sous-embranchement regroupant tous les Eumollusques sauf les Polyplacophores.

Les Amphineures sont le deuxième sous-embranchement des Mollusques et regroupent les Aplacophores et les Polyplacophores.

Les Bivalves et les Scaphopodes peuvent être regroupés sous le terme Diasomes.
Tableau 2 : Définition des classes de mollusques

<table>
<thead>
<tr>
<th>Monoplacophores</th>
<th>Coquille d'une seule pièce. Présence d'une métamérie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Néopilina - seule espèce actuelle)</td>
<td></td>
</tr>
<tr>
<td>Aplacophores</td>
<td>Pas de coquille ni de plaques (mais la larve en possède 8), le tégument contient des spicules.</td>
</tr>
<tr>
<td>(Néomia)</td>
<td></td>
</tr>
<tr>
<td>Polyplacophores</td>
<td>Présence de 8 plaques, articulées entre elles, disposées en série d'avant en arrière</td>
</tr>
<tr>
<td>(Chitons)</td>
<td></td>
</tr>
<tr>
<td>Gastéropodes</td>
<td>Coquille spiralée autour d'un axe imaginaire.</td>
</tr>
<tr>
<td>(escargots)</td>
<td></td>
</tr>
<tr>
<td>Scaphopodes</td>
<td>Coquille constituée d'un simple cône, légèrement arquée, ouvert aux deux extrémités. La tête est réduite</td>
</tr>
<tr>
<td>(la dentale)</td>
<td></td>
</tr>
<tr>
<td>Lamellibranches</td>
<td>Coquille constituée de deux valves séparées, articulées au niveau d'une charnière. Pas de tête.</td>
</tr>
<tr>
<td>(ou bivalves ou acéphales)</td>
<td></td>
</tr>
<tr>
<td>(Huitre, moule...)</td>
<td></td>
</tr>
<tr>
<td>Céphalopodes</td>
<td>Coquille pouvant être interne et réduite. Présences de tentacules.</td>
</tr>
<tr>
<td>(seiche, poulpe)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 : Polyplacophores (Chiton olivaceus, C. corallinus)

Figure 4: Scaphopode (Dentalium sp)

Figure 5 : Gastéropodes (Bolma rugoso, Monodonta turbinata, Patella ferrugina)

Figure 6 : Lamellibranches (Mytilus edulis, Glycymeris pilosa, Crassostrea gigas)
Figure 7 : Céphalopodes (seiche, poulpe et calmar)
1.3.- SYSTEMATIQUE DES MOLLUSQUES D’EAU DOUCE

Les *Succinae* ont une coquille qui ressemble à celle des *Lymnaea* mais on sépare les deux genres par la position des yeux qui sont au sommet des tentacules postérieurs chez *Succinae* alors qu’ils sont à la base des tentacules chez *Lymnaea* et les Pulmonés aquatiques. Le pied est également plus volumineux chez les *Succinae*.

Les *Veronicella,* dépourvus de coquille externe, ont l’allure de Limaces.

La classification des mollusques aquatiques peut être schématisée au tableau 3.

Tableau 3 : Classification des Mollusques

<table>
<thead>
<tr>
<th>Mollusques</th>
<th>Gastéropodes</th>
<th>Pulmonés</th>
<th>Eulamellibranches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous classe</td>
<td>Prosobranches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordre</td>
<td>Mésogastropodes</td>
<td>Basommatophores</td>
<td></td>
</tr>
<tr>
<td>Sous ordre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Pilidae</td>
<td>Ancylidae</td>
<td>Unionidae</td>
</tr>
<tr>
<td></td>
<td>Viviparidae</td>
<td>Planorbidae</td>
<td>Mutelidae</td>
</tr>
<tr>
<td></td>
<td>Thiaridae</td>
<td>Bulinidae</td>
<td>Etheriidae</td>
</tr>
<tr>
<td></td>
<td>Bythinidae</td>
<td>Lymnaeidae</td>
<td></td>
</tr>
</tbody>
</table>

Il est relativement aisé, d’après la forme de la coquille et de quelques caractères anatomiques simples, de déterminer la famille et le genre de la plupart des mollusques présents dans l’Afrique soudanienne. La distinction des espèces par contre est souvent difficile dans beaucoup de genres. En effet, du fait de leurs
possibilités limitées de dispersion et de l’absence de communications entre les bassins ou les collections d’eau, les mollusques peuvent arriver à constituer des populations qui évoluent génétiquement de manière isolée. Plus grande est la période d’isolement, plus forte est la probabilité de voir se constituer une race locale différente génétiquement de la forme typique de l’espèce. Les mollusques sont également sensibles aux conditions du milieu dans lequel ils vivent. Ainsi, selon la teneur des eaux en calcium, la coquille sera plus ou moins épaisse, et si les conditions écologiques sont excellentes, les animaux atteindront des tailles bien plus importantes que dans des milieux moins favorables. Enfin, chez les Lamellibranches Unionidae et Mutelidae par exemple, la forme générale de la coquille peut elle-même varier très sensiblement d’un biotope à un autre, pour un même bassin hydrologique. On comprendra aisément que la multiplication des éco phénotypes associée à des évolutions génétiques différentes, rende parfois hasardeuse l’identification spécifique des mollusques. La tâche est encore compliquée par le fait que de nombreuses diagnoses ont été effectuées à partir d’exemplaires uniques, parfois en mauvais état, que les descriptions sont souvent sommaires et que certains types ont disparu ou sont inutilisables (formes atypiques, coquilles érodées, etc.).

Tout ceci explique que sur le plan spécifique, les opinions des spécialistes peuvent parfois être divergentes. Chez les Pulmonés vecteurs de bilharziose, de loin les mieux étudiés en Afrique, tous les caractères anatomiques utilisables ont été soigneusement observés. Malgré cela, certains doutes subsistent encore. De nouvelles techniques (chromatographie, étude des chromosomes) actuellement utilisées n’ont pas encore résolu les problèmes, et tendent même à les compliquer dans certains cas.

2.- MORPHOLOGIE ET ANATOMIE

2.1.- CARACTERES GENERAUX

L'embranchement des mollusques tire son nom du latin *mollis*, « mou ». La science consacrée à l'étude des mollusques est la malacologie.

Malgré la grande diversité de formes, plusieurs caractères se retrouvent chez tous les mollusques actuels. La partie dorsale du corps est un manteau qui secrète des spicules calcaires, formant des plaques ou une coquille. Entre le manteau et la masse viscérale se trouve la cavité palléale au sein de laquelle débouchent l'anus et les conduits génitaux. Le système nerveux est constitué d'un anneau nerveux autour de l'oesophage avec au moins deux paires de cordons nerveux (trois chez les bivalves).

La plupart des mollusques ont perdu toutes traces de métamérisation. Ils ont une symétrie bilatérale, mais qui peut être altérée par une torsion du corps. Leur tégument est mou. Il contient de nombreuses glandes qui sécrètent du mucus.

Les mollusques sont des cœlomates, mais leur cœlome se limite à un péricarde, c'est-à-dire que le cœur est situé dans une cavité creusée dans du tissu d'origine mésodermique. La cavité générale des mollusques est plus ou moins oblitérée par du tissu conjonctif, à l'exception d'une partie qui enveloppe le cœur (péricarde) et d'une autre partie, en relation avec les deux autres, qui constitue les organes excréteurs (néphridies).

GASTEROPODES

La coquille des Gastéropodes est constituée d'une seule pièce qui sert de protection au corps de l'animal. Ce dernier, mou et segmenté, présente trois grandes régions :

- La tête qui porte une paire de tentacules contractiles à la base desquels se trouvent les yeux chez les mollusques aquatiques. La bouche comprend généralement une mâchoire chitineuse sur la face dorsale et une radula (sorte de langue râpeuse) sur la face ventrale.
- Le pied est un organe musculaire souvent bien développé qui sert à la locomotion.

- La masse viscérale enveloppée dans une membrane, le manteau, qui sécréte la coquille. Cette masse viscérale comprend les principaux organes. Chez les Gastéropodes, on note l’existence d’une cavité palléale formée par un repli du manteau, dans laquelle débouchent l’anus et l’orifice urinaire. Cette cavité palléale abrite une branchie chez les Prosobranches. Les Pulmonés n’ont pas de branchies mais possèdent une cavité pulmonaire à plafond très vascularisé.

Figure 8 : Gastéropode (escargot)
LAMELLIBRANCHES

La coquille des Lamellibranches est composée de deux valves indépendantes mais articulées entre elles. Ils se distinguent anatomiquement des Gastéropodes par l'absence de tête individualisée d'où le nom d'Acéphales sous lequel on désigne parfois ce groupe. Ils ne possèdent ni mâchoires ni radula, et la bouche entourée de quatre palpes ciliés s'ouvre directement dans l'œsophage. Le pied musculeux est comprimé en forme de languette et sert surtout à l'animal pour s'enfouir dans le sédiment. Deux replis du manteau délimitent une cavité palléale à l'intérieur de laquelle sont situées les branchies. A l'extrémité postérieure de l’animal, les bords du manteau peuvent être partiellement soudés et délimiter un orifice exhalant et un orifice inhalant qui se prolongent parfois en tubes ou siphons.

![Figure 9 : Lamellibranche (bivalve)](image)

2.2.- FOCUS SUR LA COQUILLE

Le terme de coquille vient du latin classique *conchylium*. Ce terme est issu du grec ancien et désignait des enveloppes calcaires dures, que ce soit des coquilles d'œufs ou de mollusques. En Français, ce terme s'utilisait même à la fin du XIXᵉ siècle pour la carapace des écrevisses. Aujourd'hui, si ce terme possède des sens plus restreints, les homonymes sont toujours nombreux. Le nom vernaculaire de certaines espèces utilisent directement ce terme comme *Coquille Saint-Jacques* ou *coquille papillon*, certaines utilisent des termes directement dérivés comme les *coques*. Isolée de l'animal qui l'a sécrétée, la coquille est communément nommée *coquillage*.
La coquille (ou test) des mollusques est constituée de carbonate de calcium (calcite et aragonite). Elle est secrétée par le manteau au fur et à mesure de la croissance de l’animal. Chez les mollusques vivants, la coquille est recouverte d’une fine couche de substance cornée (conchyoline) appelée périostacum qui assure la protection des couches calcaires. L’intérieur de la coquille est recouvert d’une couche de nacre à l’aspect satiné.

Chez les Gastéropodes, la coquille d’une seule pièce résulte schématiquement de l’enroulement d’un cône très allongé autour d’un axe appelé Columelle. On parlera de coquille dextre lorsque l’enroulement vu du pôle apical (ou apex) a lieu dans le sens des aiguilles d’une montre, et de coquille senestre dans le cas contraire (Figure 10). À l’exception des Ancylidae, la coquille comporte plusieurs tours de spire séparés par des sutures. L’ouverture ou péristome est bordé par une lèvre (ou labre). Chez les Prosobranches, l’opercule qui est une pièce chitineuse ou calcifiée fixée au pied de l’animal, vient obturer le péristome lorsque l’animal se rétracte. Cette pièce n’existe pas chez les Pulmonés.

![Figure 10 : (1) Conquille senestre (Bilunus) de Gastéropode ; a : apex ; l : Lèvre ; p : péristorne ; s : suture ; sp : spire. (2) Coquille dextre (Lymnaea) de gastéropode.](image)

La coquille des Lamellibranches (Figure 11) est constituée de deux valves souvent symétriques. Sur le bord dit dorsal de chaque valve, on distingue un sommet plus ou
moins saillant appelé crochet ou umbo, en dessous duquel on trouve la charnière. Cette dernière qui assure l’articulation des valves, est un dispositif d’engrenage plus ou moins compliqué, avec des dents qui pénètrent dans des cavités de l’autre valve. A côté du sommet, et à l’extérieur de la coquille, on observe le ligament en forme de fuseau constitué de conchyoline. Il maintient les valves solidaires et assure leur écartement en raison de son élasticité propre. A l’opposé du bord dorsal se trouve le bord ventral, au niveau duquel peut sortir le pied de l’animal. Le bord antérieur est celui qui est situé du côté de la bouche, alors que le bord postérieur, à l’opposé, est proche des siphons. Sur la coquille fermée, le crochet est incliné dans la direction du bord antérieur. La fermeture des valves est assurée par des muscles adducteurs qui sont insérés perpendiculairement sur la face intérieure des valves. Lors de l’étude des coquilles, on est amené à effectuer certaines mensurations.
La plus courante est la hauteur de la coquille chez les Gastéropodes, ou le diamètre lorsque l’enroulement a lieu dans un plan comme chez les Planorbidae.

Chez les Lamellibranches, la longueur et la hauteur sont respectivement les plus grandes dimensions dans le sens antéropostérieur et le sens vertical, l’épaisseur étant la plus grande dimension transversale.
2.3.- LA RADULA

Elle est située sur la face ventrale de la bouche, et se présente sous la forme d’un ruban chitineux portant plusieurs rangées transversales de petites dents sur la face dorsale. Chaque rangée comprend une dent centrale de part et d’autre de laquelle sont disposées symétriquement des dents latérales et marginales dont le nombre peut dépendre de l’âge de l’animal. Chez un *Biomphalaria* adulte (Planorbidae), le nombre de dents d’une rangée peut varier entre 39 et 59, alors qu’il n’est généralement pas supérieur à 7 chez les Prosobranches. La forme des dents et leur disposition ont une valeur systématique, en particulier chez les Pulmonés. Chez ces derniers, la dent centrale est pourvue de deux cuspides, et les dents latérales de trois cuspides principaux appelés endocone, mésocoène et ectocone. Les endocones peuvent eux-mêmes se diviser en deux ou plusieurs cuspides, alors que mésocoène et ectocone sont rarement divisés sur les dents latérales. Les dents marginales sont longues et placées obliquement. Les endocones et parfois les ectocones sont divisés en de nombreux cuspides secondaires.

2.4.- SYSTEME NERVEUX

Le système nerveux typique d’un mollusque comprend des ganglions cérébroïdes (qui peuvent fusionner pour former un cerveau) reliés d’une part à des ganglions pédieux, d’autre part à des ganglions viscéraux, par un double collier péri œsophagien.

2.5.- APPAREIL CIRCULATOIRE

La circulation est incomplète, lacunaire. Du cœur partent de courtes artères mais il n’y a ni veines, ni capillaires.

Le sang est incolore, ou légèrement coloré par de l’hémoglobine ou de l’hémocyanine dissoutes.
2.6.- APPAREIL REPRODUCTEUR

Les sexes sont généralement séparés. Les œufs sont plus ou moins riches en vitellus, et l’éclosion a lieu après un stade plus ou moins avancé de développement. Larve libre (trochophore, véligère) ressemble beaucoup à la trochophore des annélides.

Chez les Pulmonés, certaines espèces peuvent se distinguer par la morphologie de l’appareil génital et plus particulièrement de l’organe copulateur.

L’appareil génital d’un Planorbidae comprend une glande génitale hermaphrodite (ovotestis) assez volumineuse qui se prolonge par un canal hermaphrodite comportant plusieurs vésicules séminales dans sa partie supérieure. Ce canal se divise ensuite en une partie mâle (canal spermatique) et une partie femelle formée de l’oviducte et de la glande à albumine. La partie distale de l’oviducte (utérus) débouche dans le vagin qui s’ouvre sous le bord du manteau, sur le côté gauche de l’animal. Le canal spermatique se poursuit par un canal déférent qui aboutit à l’organe copulateur. Celui-ci est composé dans sa partie supérieure d’un fourreau entourant le pénis, et dans sa partie inférieure d’un prépuce plus large. L’organe copulateur s’ouvre sous le tentacule gauche des mollusques à coquille senestre, et sous le tentacule droit des mollusques à enroulement dextre. La forme de l’organe copulateur, et les proportions relatives du fourreau et du prépuce, sont utilisés en systématique. L’organe copulateur peut être absent chez certaines espèces qui sont alors dites aphalliques. L’organe copulateur est rétractile chez les Pulmonés et non rétractile chez les Prosobranches. Dans ce dernier groupe, les Thiaridae en sont dépourvus alors qu’il est bien développé chez les Bythinidae. Chez les Viviparidae, le tentacule droit est transformé en organe copulateur.
La plupart des mollusques aquatiques de la zone soudanienne ont une vaste répartition géographique qui déborde souvent le cadre de la zone étudiée. Les cas d’endémisme sont rares. On est en réalité souvent gêné, lorsqu’on essaie de dresser la carte de répartition d’une espèce, par les nombreuses synonymies reconnues ou seulement pressenties par les auteurs.

Ceci est particulièremenent vrai chez certains Lamellibranches pour lesquels la notion d’espèce, en l’absence de critères reconnus, reste parfois subjective.

1.1. PROSOBRANCHES

Viviparidae : *Bellamya unicolor* est présent dans toute la zone éthiopienne et beaucoup d’espèces décrites de différentes régions d’Afrique sont probablement synonymes. *B. duponti* est signalé au Sénégal.

Tharidae : *Melania fuberculata* est présent dans la majeure partie d’Afrique, à l’exception des bassins du Niger et du Congo. Cette espèce est également présente

La plupart des espèces habitent des cours d’eau forestiers et leur présence en dehors de ces milieux paraît être accidentelle. Ils peuvent cependant remonter en zone soudanienne dans les rivières sous forêt galerie.

1.2.- PULMONES

Lymnaeidae : *Lymnaea natalensis*, seule espèce du genre est largement distribuée en Afrique.

1.3.- LAMELLIBRANCHES

Corbiculidae : *Corbicula africana* paraît être largement distribué au Niger.

Sphaeridae : *Pisidium pirothi* est connu au Tchad, et c’est apparemment la seule *Sphaerium courteti* est présent également au Tchad, en Côte d’Ivoire, *Eupera parasitica* a une large distribution en Afrique.

Etheridae : *Etheria elliptica* présente une large répartition en Afrique (dans le bassin du Nil et au sénégal).

2.- ECOLOGIE

On peut faire grossièrement une distinction entre les peuplements de mollusques d’eau stagnante et d’eau courante, bien que des espèces vivent indifféremment dans l’une comme dans l’autre. A l’exception des Pulmonés vecteurs de bilharziose, les travaux portant sur l’écologie des mollusques d’eau douce en Afrique soudanienne sont rares.

Sur les fonds par contre les Prosobranches (*Melania*, *Bellamy*, *Cleopatra*) sont dominants et sont associés aux bivalves de petite taille (*Corbicula*, *Pisidium*, *Eupera*), et aux Unionidés (*Caelatura*). La densité et la présence des espèces est souvent fonction des caractéristiques du milieu, dont la salinité et la nature des fonds qui jouent un rôle extrêmement important (Lévéque, 1972). Les Prosobranches vivent en surface du sédiment, ou légèrement enfouis lorsque le substrat est très meuble.

Dans les collections d’eau temporaire, la malacofaune est toujours assez réduite, et souvent à base de *Bulinus*, parfois de *Biomphalaria*.

Les eaux courantes sont généralement le domaine des grandes Lamellibranches (Mutelidae). L’un des plus fréquents est *Etheria elliptica* qui vit fixé aux substrats durs (rochers, troncs d’arbres, etc.) ou en colonies lorsque les substrats font défaut. *Aspatharia Spathopsis* et *Mutela* vivent enfoncés obliquement dans les sédiments, en ne laissant dépasser que leurs siphons. Ils filtrent l’eau de laquelle ils extraient les algues, les organismes planctoniques et les débris dont ils se nourrissent. Les *Caelatura* sont également fréquents dans ces milieux, ainsi que les *Eupera* qui vivent attachés aux pierres ou aux végétaux.

La faune d’eau stagnante peut se retrouver en milieu courant, soit dans des zones calmes près du bord, soit dans des vasques en période d’été. Néanmoins, certains *Biomphalaria* sont susceptibles de vivre en eau courante.
3.- RESISTANCE À L’ANHYDROBIOSE

Les milieux aquatiques temporaires sont fréquents dans la zone soudanienne (mares de saison des pluies, plaines d’inondation, etc.) et les mollusques qui les peuplent présentent une résistance particulière à l’assèchement et à la déshydratation. Par exemple, le mollusque *Bulinus senegalensis* s’enfonce dans la vase du fond quand la mare tarit et qu’il résiste aux dures conditions de la saison sèche, soit sous la forme adulte, isolé de l’extérieur à l’aide d’une cloison protectrice qu’il secrète, sous la forme de pontes résistantes à la dessiccation (Gretillat, 1961).

Daget (1961) a conservé durant six mois des *Spathosis rubens* sur la table de son laboratoire et les a pesés régulièrement. Il a constaté l’existence d’une phase d’adaptation à l’anhydrobiose d’environ 20 jours, durant laquelle la perte en poids est rapide, puis une phase d’anhydrobiose proprement dite au cours de laquelle les pertes de poids sont beaucoup plus lentes. Au bout de 6 mois, les cinq spécimens étudiés ont repris vie, peu de temps après avoir été remis dans l’eau, les coquilles s’entrouvant dans un délai d’une demi-heure à une heure. Le même auteur (1962) a constaté d’autre part que chez des *Aspatharia* placés durant 13 mois dans les conditions précédentes, le pourcentage d’individus survivants était de 86 % pour *Aspatharia tritis*, 32% pour *A. mabillei* et 5 % pour *A. complanata* et *A. rochebrunae*. La résistance à l’anhydrobiose de ces grands Lamellibranches leur permet de coloniser les cours d’eau s’asséchant temporairement.

Chez les Pulmonés de nombreuses espèces sont également capables d’estiver. Larivière *et al.* (1962) ont montré au laboratoire que les *Bulinus guernei* s’enfouissent dans la terre alors que * Biomphalaria pfeifferi* reste en surface. Au bout d’un mois, 100 % des *B. guernei* survivaient à la dessiccation contre 50 %. seulement des *B. pfeifferi*. Chu *et al.* (1966) ont également observé que les *Bulinus truncatus* s’enfonçaient dans le sol pour résister à la dessiccation. Chez cette espèce, le taux de survie est plus important chez les jeunes individus que chez les adultes. *Bulinus forskalii* peut vivre plus de 6 mois en anhydrobiose dans la nature. Chez les Pulmonés ayant subi l’estivation, il semble que la reprise d’activité s’accompagne d’une activité biologique plus importante que chez les individus normaux. Ainsi, Chu et *al.* (1967) ont montré qu’après dessiccation, la ponte de *B. truncatus* était deux
fois plus élevée que la normale. D’autre part, Lévêque (1968) a constaté que les *B. forskalii* sortant d’anhydrobiose avaient une croissance plus rapide et atteignaient une taille plus importante.

4.- HABITATS DES MOLLUSQUES D’EAU DOUCE

Les habitats d’eau douce couvrent moins de 1% de la surface terrestre et ils abritent pourtant plus de 25 % de tous les vertébrés décrits, plus de 126 000 espèces animales et près de 2 600 plantes macrophytes.

Les divers types d'habitats sont exposés à accueillir des mollusques tels que le lit mineur du fleuve, les plaines inondables, les tributaires, et les étangs. La présence, la distribution et l'abondance de mollusques d'eau douce dépendent des caractéristiques du milieu, parmi eux sont la teneur en sel, la végétation, et la nature des fonds qui jouent un rôle crucial. La végétation et les fonds représentent les habitats principaux pour les mollusques. Les habitats caractéristiques peuvent varier, suivant les groupes d'espèces. Les mollusques pulmonaires sont fréquents dans la végétation aquatique. Les prosobranches et les mollusques bivalves dominent les fonds.

Certaines espèces de mollusques gastéropodes d'eau douce possèdent la capacité remarquable de résister à la sécheresse et de vivre en anhydrobiose. C'est à dire que par suite d'un dessèchement du milieu, ils entrent en vie ralentie et restent dans cet état jusqu'au retour des conditions favorables.

5.- REPRODUCTION

Les gamètes sont expulsés par les conduits génitaux dans la cavité palléale. Après fécondation, l’œuf subit une segmentation spirale et forme une larve trochophore comme chez les *Annélides*. Chez les Céphalopodes l’œuf, possédant une forte quantité de réserve (vitellus), ne peut subir cette segmentation spirale.
La larve possède une ébauche de coquille sur sa face dorsale. Chez les lamellibranches et les Gastéropodes l’œuf se développe plus longtemps avant de donner une larve véligère qui se distingue de la trochophore par une couronne de cils supplémentaire, et un repli du tube digestif plus important. La larve va alors subir une croissance du coté ventral et dorsal avec l’apparition de proéminences (qui deviendront respectivement le pied et la masse viscérale). Le tube digestif reste replié, c'est ce que l'on appelle la flexion endogastrique. Chez les Gastéropodes la partie dorsale de la larve va subir en plus une torsion de 180° amenant la cavité palléale au-dessus de la tête. Chez les Lamellibranches, le futur manteau forme deux zones symétriques qui évolueront en deux valves, englobant l'ensemble de l'organisme. Chez les céphalopodes, c'est le futur pied qui se place en position antérieure et donnera les tentacules pour la partie dorsale et l'entonnoir en partie ventrale. Par suite de ce déplacement, la cavité palléale se retrouve sous la bouche.

Les initiales mésodermiques ne se segmentent pas transversalement, c'est pour cela qu'il n'y a pas de métamérie. Le coelome se réduit à la cavité péricardique et rénale (qui sont en relation).

La coquille de certaines espèces ne croit pas uniformément tout au long de l’année. Des périodes de croissances s’alternent avec des périodes de stagnation. Ces périodes de stagnations sont principalement liées au climat. En effet la disponibilité en nourriture et particulièrement en calcium ou la température influe directement sur la rapidité de synthèse des coquilles. Ainsi en comptant les stries de croissances pour ces espèces, on peut en déduire l'âge et la santé de l'animal.

5.1.- PROSOBRANCHES

Les formes signalées en Afrique soudanienne sont à sexes séparés. *Bellamya unicolor* est vivipare, l'extrémité de l'oviducte fonctionnant comme un utérus dans lequel les œufs se développent. Les embryons sont de plus en plus évolués lorsqu'on approche de l'orifice du gonoducte. Ils naissent avec une coquille d'environ 2 à 3 mm de haut et commencent leur vie indépendante. Dans le lac Tchad, la maturité sexuelle est atteinte au troisième mois après la naissance et la reproduction est continue (Lévéque, 1973). *Melania tuberculala* est également vivipare, alors que les *Pila* sont ovipares. Dans ce dernier genre, les œufs recouverts d’une coquille
calcaire sont pondus en grappe un peu au-dessus de la surface de l’eau. Les *Cleopatra* sont réputés ovipares également, mais les œufs et le développement ne sont pas connus. La taille adulte est atteinte 3 à 4 mois après la naissance dans le lac Tchad.

5.2.- PULMONES

5.3.- BIVALVES

Chez les Unionidae, les sexes sont séparés. Les branchies constituent un marsupium pour les œufs et les jeunes. Les œufs éclosent en donnant une larve (glochidium) avec deux valves rondes, qui diffère beaucoup de l’adulte. Ces larves expulsées par la femelle tombent sur le sol et attendent qu’un poisson passe pour se fixer sur lui et s’enkyster dans l’épithélium. Quand elles atteignent leur maturité au bout de plusieurs semaines, elles se libèrent et tombent sur le fond. Elles ont alors une glande à byssus bien développée qui leur permet de s’attacher au substratum. Cette glande se réduit ensuite progressivement et les petits bivalves commencent alors leur vie d’adulte.

Fryer (1961) a décrit le développement larvaire d’un *Mutelu* africain (*Mutelu bourguignati*). Chez la femelle adulte, les œufs sont incubés dans les branchies où ils se développent pour donner de petites larves présentant un corps arrondi portant des crochets et prolongé antérieurement d’un très long tentacule. Ces larves, libérées par le siphon exhalant, viennent se fixer sur un poisson de la famille des Cyprinidae (*Barbus*), principalement au niveau des nageoires. Elles se modifient alors pour débuter une phase parasite du développement. Au cours de cette phase, la larve acquiert progressivement la morphologie de l’adulte et se détache de son hôte lorsqu’elle a atteint une taille d’un peu plus d’un millimètre. Elle commence alors sa vie indépendante.
La reproduction des Mutelidae paraît avoir lieu pendant les crues. Chez les *Corbicula*, les œufs et les embryons très nombreux (500 à 1 000) et petits (1/6 de mm) sont incubés dans les branchies. Dans le lac Tchad la reproduction a lieu une fois par an, en saison fraîche. Les Sphaeridae (*Pisidium, Sphaerium, Byssanodonta*) sont hermaphrodites. Les œufs peu nombreux, sont incubés dans les branchies où ils grossissent jusqu’à atteindre le quart de la taille de l’adulte. Ils sont alors émis à travers le siphon anal et sont presque sexuellement matures.
IV. IMPORTANCE DES MOLLUSQUES D’EAU DOUCE

1. IMPORTANCE DES ECOSYSTEMES DULCICOLES

Les écosystèmes d’eau douce procurent de nombreux biens et services, comme l’apport de nourriture (protéines), d’eau, de matériaux de construction et le contrôle des inondations. Les moyens de subsistance de nombreuses communautés parmi les plus pauvres du monde dépendent de ressources prélevées dans des écosystèmes d’eau douce.

2. IMPORTANCE ECOLOGIQUE DES MOLLUSQUES DULCICOLES

Contrairement aux mollusques marins, les mollusques d’eau douce n’ont aucun intérêt économique direct. Cependant, ils jouent un rôle écologique et social important. Ils font partie du régime alimentaire de beaucoup de poissons d’eau douce et représentent d’excellents indicateurs écologiques. Les populations des mollusques bivalves jouent un rôle actif dans les processus de sédimentation et de purification.

Les lamellibranches concentrent beaucoup de substances comme des métaux lourds et des pesticides.

3. ROLE DES MOLLUSQUES DANS LA TRANSMISSION DES HELMINTHIASES

La plupart des mollusques dulcicoles sont susceptibles de transmettre une ou plusieurs espèces de parasites de vertébrés. Ils sont nécessairement le lieu de
multiplication des stades larvaires de Trématodes, et éventuellement l’agent de dissémination des Trématodes et des Cestodes.

Dans le cas des Trématodes, les œufs éclosent dans l’eau donnant naissance à une forme infestante, le miracidium qui pénètre chez le mollusque où elle se multiplie au niveau de la glande génitale et de l’hépatopancréas donnant naissance à des rédies. De ces dernières sort une autre forme larvaire libre, la cercaria, qui après libération dans le milieu aquatique, pénètre chez l’hôte définitif pour se transformer en adulte.

En Afrique, Bulinus et Biomphalaria sont respectivement vecteurs de Schistosoma haematobium (bilharziose vésicale) et de Schistosoma mansoni (bilharziose intestinale). Les Lymnaea transmettent Fasciola gigantica (grande Douve).

4.- COQUILLAGE ET POLLUTION MARINE

Filtrant l’eau de mer, les coquillages retiennent les toxiques, et constituent donc un indicateur particulièrement précieux de la pollution marine. Trois types de contaminants s’y accumulent : les résidus chimiques, les pollutions microbiologiques (liés aux dysfonctionnements des stations d’épuration et aux activités agricoles) et, depuis une vingtaine d’années, les substances toxiques produites par certaines espèces de micro-algues, qui peuvent provoquer des désordres gastro-intestinaux ou neurologiques, voire des intoxications, lorsque les coquillages sont consommés. Ce dernier phénomène a été clairement caractérisé pour la première fois dans les années 1970, les pollutions augmentant de manière importante dans les années 1990, avant de se stabiliser dans les années 2000.

V.- MENACES PESANT SUR LES ESPECES D’EAU DOUCE

La croissance de la population humaine, ainsi que le développement industriel et agricole, exerce une pression massive sur les systèmes d’eau douce du monde entier. Les hauts niveaux de prélèvement d’eau, les installations hydroélectriques, la
construction des barrages, la pollution, le drainage des zones humides et la canalisation des cours d'eau, la déforestation entraînant une sédimentation, l'introduction d'espèces envahissantes et la surexploitation, ont des impacts majeurs sur la biodiversité des eaux douces. De plus, les changements climatiques, la raréfaction croissante de l'eau douce, et les objectifs de développement tels que l'amélioration de l'accès à l'eau potable et à l'hygiène vont également avoir des impacts importants dans le futur.

VI.- PROTOCOLE DE SUIVI DES MOLLUSQUES DANS LE BASSIN DU FLEUVE GAMBIE

Le suivi des mollusques dans le bassin du fleuve Gambie va intéresser le lit mineur du fleuve, la plaine d’inondation, les mares, les étangs, etc. Ce suivi pourrait se faire par : un inventaire ou recensement par l’intermédiaire de benne et/ou dragage.

1.- MATERIELS ET METHODES

1.1.- MATERIELS

1.1.1.- EQUIPE SCIENTIFIQUE
L’équipe scientifique idéale devra être constituée au moins d’un chercheur spécialisé en malacologie qui sera assisté par un technicien systématicien général des mollusques.

1.1.2.- MATERIEL DE COLLECTE
Des bennes, dragues et filets doivent être utilisées pour effectuer la collecte de la faune malacologique.

1.1.3.- PERIODES D’ÉCHANTILLONNAGE
L’échantillonnage s’effectuera en période de crue et de décrue dans différents sites d’étude.
1.1.4. SITES D’ETUDE
Les sites d’étude seront:
- Le lit mineur du fleuve,
- Les plaines d’inondation,
- Les étangs, rivières, marigots, etc.
- Les points d’eau non permanents (mares disparaissant au cours de la saison sèche et formées par l’accumulation des eaux de pluies dans une dépression naturelle à fond plus ou moins imperméable),
- Les points d’eau permanents (alimentés par une source et qui conservent, jusqu’au début de la saison des pluies, un peu d’eau ou de vase encore humide),

1.2.- METHODES

1.2.1.- METHODES DE RECOLTE ET D’ETUDE
L’inventaire sera effectué aussi bien en période de crue qu’en période de décrue. Il intéressera les zones amont et aval des barrages.
Il n’est pas recommandé de collecter à la main les mollusques africains d’eau douce, particulièrement les Pulmonés dont certaines espèces transmettent des parasites. Les pinces souples à insectes sont pratiques pour manipuler les animaux sans détériorer la coquille (Douget, 2009).

Sur le terrain, on peut utiliser un filet emmanché pour échantillonner dans la végétation, mais on a également intérêt à inspecter soigneusement les débris végétaux flottants, les feuilles mortes et les pierres, tous ces substrats étant en général colonisés par diverses espèces.

Par ailleurs, les gastéropodes aquatiques et les bivalves peuvent être récoltés à l’aide d’une épuisette ou d’un troubleau. C’est la méthode la plus adaptée et la plus simple pour l’échantillonnage de zones humides de faible profondeur (Douget, 2009).

L’échantillonnage dans les fleuves et grandes rivières demande des techniques moins faciles à mettre en œuvre et davantage perturbatrices (utilisation d’une benne ou d’une drague par exemple). Pour les espèces benthiques l’utilisation de la drague est généralement indispensable (Lévêque, 1973).
Il sera utile de prospecter des micro-habitats différents (varier les strates horizontales et verticales, etc..) pour accéder à un maximum d’espèces. Le prélèvement de sédiment peut, à ce titre, se révéler productif.

1.2.2.- TRAITEMENT DES DONNEES

Les données collectées seront saisies et traitées par un logiciel de traitement de données (Excel, SPSS, etc.). Dans le cadre de l’échantillonnage, les informations récoltées concerneront :

- un inventaire faunistique suivi d’une cotation approximative d’abondance pour chaque espèce. L’ensemble des espèces inventoriées seront regroupées dans un tableau et classées par point de collecte. La localisation du lieu de récolte sera faite et les caractéristiques du milieu mentionnées (profondeur, nature des fonds, etc.).

- L’étude de paramètres bio morphologiques pour les bivalves (longueur totale et/ou largeur totale, et pondéraux pour les mollusques de manière générale).

RECOMMANDATIONS

La conservation des ressources en mollusques essentielle pour l’équilibre de l’écosystème nécessite une bonne gestion du milieu naturel. Il faut donc :

- d’une part, garantir la survie des mollusques reproducteurs pour qu’ils puissent recoloniser la zone humide pendant la crue suivante et leur fournir des sites de reproduction adéquate. Il faut ainsi faire en sorte que :
 ➢ Les mares ne s’assèchent pas durant la saison sèche, quitte à devoir les approfondir,
 ➢ Assurer la conservation des plaines d’inondation et des marais,
 ➢ Maintenir le régime des crues,

- D’autre part, assurer la recherche et la surveillance de l’environnement et faire un suivi régulier des mollusques. Il est important également de définir les espèces clefs à suivre.
REFERENCES BIBLIOGRAPHIQUES

- David (M.) & Steven (M.), 1978.- Principles of Paleontology (2 éd.). W.H. Freeman and Co. 4-5.

- Larivibre (M.), Hocque (T. P.), Ranque (P.), 1962. - Giude de la résistance à l'andydrobiose des Gastropodes d’eau douce Bulinus guernei Dautzenberg et Biomphalaria pfeiferi gaudi Ranson C. R. Séances Soc. Biologie, CLVI, 4 : 725-726.

- Skinner (J.), Beaumond (N.) & Pirot (J. Y.), 1994.- Manuel de formation à la gestion des zones humides tropicales. UICN, 272 p.

ANNEXES

Annexe 1: Liste des mollusques rencontrés dans le bassin du fleuve Gambie

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Author-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrogryus</td>
<td>coretus</td>
<td>(Blainville, 1826)</td>
</tr>
<tr>
<td>Aspatharia</td>
<td>dahomeyensis</td>
<td>(Lea, 1859)</td>
</tr>
<tr>
<td>Aspatharia</td>
<td>mabillei</td>
<td>(Jousseaume, 1886)</td>
</tr>
<tr>
<td>Aspatharia</td>
<td>tawai</td>
<td>(Rang, 1835)</td>
</tr>
<tr>
<td>Aspatharia</td>
<td>Chaiziana</td>
<td>(Rang, 1835)</td>
</tr>
<tr>
<td>Bellamya</td>
<td>Unicolor</td>
<td>(Olivier, 1804)</td>
</tr>
<tr>
<td>Biomphalaria</td>
<td>Pfeifferi</td>
<td>(Krauss, 1848)</td>
</tr>
<tr>
<td>Bulinus</td>
<td>truncates</td>
<td>(Audouin, 1827)</td>
</tr>
<tr>
<td>Bulinus</td>
<td>senegalensis</td>
<td>Müller, 1781</td>
</tr>
<tr>
<td>Bulinus</td>
<td>forskalli</td>
<td>(Ehrenberg, 1831)</td>
</tr>
<tr>
<td>Bulinus</td>
<td>globosus</td>
<td>(Morelet, 1866, 1868)</td>
</tr>
<tr>
<td>Bulinus</td>
<td>umbilicatus</td>
<td>Mandahl-Barth, 1973</td>
</tr>
<tr>
<td>Bulinus</td>
<td>jousseaumei</td>
<td>(Dautzenberg, 1890)</td>
</tr>
<tr>
<td>Caelatura</td>
<td>aegyptiaca</td>
<td>(Cailliaud, 1827)</td>
</tr>
<tr>
<td>Chambardia</td>
<td>wahlbergi tabula</td>
<td>(Sowerby, 1867)</td>
</tr>
<tr>
<td>Chambardia</td>
<td>rubens rubens</td>
<td>(Lamarck, 1819)</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>bulimoides</td>
<td>(Olivier, 1804)</td>
</tr>
<tr>
<td>Corbicula</td>
<td>fluminationis consobrina</td>
<td>(Müller, 1774)</td>
</tr>
<tr>
<td>Cyrenoida</td>
<td>dupontia</td>
<td>Joannis, 1835</td>
</tr>
<tr>
<td>Etheria</td>
<td>elliptica</td>
<td>Lamarck, 1807</td>
</tr>
<tr>
<td>Eupera</td>
<td>ferruginea</td>
<td>(Krauss, 1848)</td>
</tr>
<tr>
<td>Gyraulus</td>
<td>costulatus</td>
<td>(Krauss, 1848)</td>
</tr>
<tr>
<td>Lanistes</td>
<td>varicus</td>
<td>(Müller, 1774)</td>
</tr>
<tr>
<td>Lymnaea</td>
<td>natalensis</td>
<td>Krauss, 1848</td>
</tr>
<tr>
<td>Melampus</td>
<td>liberianus</td>
<td>H. & A. Adams, 1854</td>
</tr>
<tr>
<td>Melanoides</td>
<td>tuberculata</td>
<td>(Müller, 1774)</td>
</tr>
<tr>
<td>Mutela</td>
<td>dubia dubia</td>
<td>(Gmelin, 1791)</td>
</tr>
<tr>
<td>Mutela</td>
<td>rostrata</td>
<td>(Rang, 1835)</td>
</tr>
<tr>
<td>Mytilopsis</td>
<td>africanus</td>
<td>(Van Beneden, 1835)</td>
</tr>
<tr>
<td>Neritina</td>
<td>rubricata</td>
<td>Morelet, 1858</td>
</tr>
<tr>
<td>Neritina</td>
<td>adansoniana</td>
<td>(Réclus, 1841)</td>
</tr>
<tr>
<td>Neritina</td>
<td>glabrata</td>
<td>Sowerby, 1849</td>
</tr>
<tr>
<td>Pachymelania</td>
<td>aurita</td>
<td>(Müller, 1774)</td>
</tr>
<tr>
<td>Pachymelania</td>
<td>fusca</td>
<td>(Gmelin, 1791)</td>
</tr>
<tr>
<td>Pleiodon</td>
<td>ovatus</td>
<td>(Swainson, 1823)</td>
</tr>
<tr>
<td>Segmentorbis</td>
<td>kanisaensis</td>
<td>(Preston, 1914)</td>
</tr>
<tr>
<td>Sphaerium</td>
<td>hartmanni courteti</td>
<td>Germain, 1904</td>
</tr>
<tr>
<td>Tympanotonus</td>
<td>fuscatius</td>
<td>(Linnaeus, 1758)</td>
</tr>
</tbody>
</table>